Geologie der Dolomiten: Etschtaler Vulkanit-Gruppe

“Im Inneren des Erdballs hausen geheimnisvolle Kräfte, deren Wirkungen an der Oberfläche zutage treten: Als Ausbrüche von Dämpfen, glühenden Schlacken und neuen vulkanischen Gesteinen, als Auftreibungen zu Inseln und zu Bergen.”

Alexander von Humboldt

Die Landschaft um Bozen mit ihren ausgedehnten Hochflächen (Ritten) und Schluchten (Eggental) ist von rotbraunen Quarzporphyr geprägt. Quarzporphyr ist die veraltete Bezeichnung für das Vulkangestein Rhyolith, eine Ablagerung vulkanischer Glutlawinen, in dem Einsprenglinge von Quarz und Feldspat in eine feinen Grundmatrix auftreten. Heutzutage spricht man eher generell von Etschtaler Vulkanit-Gruppe (EVG), da es sich um eine komplexe am Festland geförderte Vulkanitabfolge aus intermediären bis felsischen Laven, Ignimbriten, pyroklastischen Brekzien, Tuffiten und vulkanoklastischen Sedimenten, die auf den Basiskonglomeraten (Waidbrucker Konglomerat) und südalpinen metamorphen Grundgebirge liegen, handelt. Das EVG in Südtirol ist das größte derartige Vorkommen in Mitteleuropa.

Die Umgebung von Bozen mit den roten, spärlich bewachsenen Felsklippen der EVG.
Die vereinfachte geologische Karte zeigt die Verteilung des kristallinen Grundgebirges, die intrudierten Plutone und die Etschtaler Vulkanit-Gruppe.

Ursprünglich wurde der „Bozner Quarzporphyr“ nach farblichen und örtlichen Varietäten unterschieden und bis in die 60er Jahre in drei große Gesteinsgruppen (basisch-intermediär bis sauren Vulkaniten) eingeteilt. Heutzutage erfolgt eine Einteilung nach vulkanischer Fazies, also zumeist Chemismus und Ablagerungsart. Petrologisch gesehen, handelt es sich um eine Abfolge von grüngraue, mafische bis intermediäre Laven und Ignimbriten (Basalt, Dazit, Andesit) und rote Laven und Ignimbriten (Rhyodazite, Rhyolithe). Am Ritten, Terlan und Nals treten Subvulkanite auf, Magmenkörper, die in seichten Krustentiefen steckengeblieben sind und besonders große Feldspateinsprenglinge aufweisen.

Aufschluss des Terlaner Subvulkanits mit bis zu 6 Zentimetern großen Feldspateinsprenglingen.
Ignimbrit der Auer-Formation, ehemalige Ablagerungen einer pyroklastischen Glutlawine, mit rötlicher Matrix aus Sanidin-Feldspat und größere Einsprenglinge aus Feldspat und Quarz. An der Spitze des Stiftes erkennbar eine der Glasscherbenschmitzen („Fiammen“), ein noch zähflüssiges Bruchstück von Lavagestein wurde durch überlagerndes Gestein zusammengedrückt.
Säulen in Ignimbrit der Auer-Formation bei Schloss Sigmundskron.
Pyroklastische Brekzie.
Aufschluss mit Fließgefüge in einem ehemaligen Lavastrom.

Die gesamte Abfolge wird als Füllung eines Caldera-artigen Einbruchbeckens gedeutet. Vor 275 bis 255 Millionen Jahre kam es zu heftigen vulkanischen Eruptionen entlang von Längsspalten, die vulkanisches Material ins Innere der Caldera ablagerten. Im Zusammenhang mit der Förderung der EVG wird auch das zeitgleich (280 bis 270 Millionen Jahre) Eindringen des Brixner Granit, Iffinger, Kreuzberg, Cima d’Asta Intrusionen und Klausenite Gänge gesehen.

Literatur:

  • AVANZINI et al. (2007): Erläuterungen zur Geologischen Karte von Italien Im Maßstab 1:50.000 Blatt 026 Eppan. APAT/Autonome Provinz Bozen Amt für Geologie und Baustoffprüfung
  • HANN, H.P. (2016): Grundlagen der Gesteinsbestimmung. Quelle & Meyer Verlag: 352
  • STINGL, V. & WACHTLER, M. (1999): Dolomiten – Das Werden einer Landschaft. Athesia Verlag: 149

Sagenhaftes Südtirol: Schneeberg

Einst zog ein Jäger aus dem Passeiertal in die Berge, um Gamswild und Steinböcke zu jagen. Als er zu Seemoos auf einem Felsblock ruhend die umliegenden Grate nach dem Wild abäugte, sah er plötzlich am Ufer des stillen Alpsees eine Frauengestalt sitzen, angetan mit einem silberschimmernden Kleid. Die winkte den Jäger zu sich und zeigte ihm funkelndes Edelgestein, das in ihrem Schoß lag. All die Schätze wollte sie dem Jäger geben und deren Fundstellen zeigen, wenn er ihr verspreche, abzulassen von der weiteren Jagd des unter ihrem Schutz stehenden Wildes. Der Jäger zerschmetterte seine Armbrust und leistet den Schwur, worauf das Salige Fräulein ihm Spalten voll Silbererz in den Felswänden zeigte. Stollen um Stollen wurden nun eröffnet, und überall fand sich reiches Erz. So viele Knappen wurden am Schneeberg beschäftigt, dass bald ein ganzes Dörflein mitten in der unwirtlichen Bergwelt entstand.

In den alten Tagen des Jägers erwachte jedoch wieder die Jagdlust; er verfertigte sich eine neue Armbrust und erlegte an einem Sonntag einen prächtigen Gamsbock. Doch die Strafe folgte sogleich: ein Felsblock löste sich und zermalmte den Frevler unter seinen Sturz. Als die Knappen am nächsten Tag zur Grube kamen, fand sich kein Silbererz mehr, sondern bloß wertloses Blendegestein, das sich nicht schmelzen ließ

Sage, die in einer handschriftliche Aufzeichnung im Bergwerkshaus zu St. Martin am Schneeberg nacherzählt ist. Hier ist die Fundgeschichte mit dem Motiv der bestraften Freveltat verknüpft, das in den Bergbausagen des alpinen Raumes weit verbreitet ist.

…dimidium loatum boni argenti de Sneberch…

Erste Erwähnung des Bergbaus am Schneeberg in einem Schreiben das auf den 24. Dezember 1237 datiert ist.
Bergwerksgelände mit Aufbereitungsanlagen bei Maiern im Talschluss des Ridnauntal.
Silberbergwerk St. Martin am Schneeberg aus dem “Schwazer Bergbaubuch”, um 1556.
Blick auf die ehemalige Bergbausiedlung St. Martin am Schneeberg mit Reste der Seilbahn zum Materialtransport nach Ridnaun über die Schneebergscharte (2.700 Meter).
Erztransport aus dem Stollen in St. Martin am Schneeberg, um 1905.

Seit jeher suchen die Menschen nach den Schätzen der Erde und versprechen sich davon Reichtum und Glück. Die ersten Erze fand der Mensch an der Erdoberfläche in Form von Ausbissen von unterirdischen Erzlagern. Dass bei diesen ersten Funden wohl der Zufall eine große Rolle spielte belegen auch viele Sagen, wie die vom Schneeberg im Passeier- und Ridnauntal.

Die Blei-Zink-Erzlagen, zumeist Zinkblende (ZnS), Bleiglanz (PbS), Kupferkies (CuFeS2), Magnetkies (FeS), Pyrit (FeS2), streichen am Schneeberg in einer Höhenlage von 2.000 bis auf über 2.500 Meter aus, und sind an die Biotitporphyroblastenschiefern des Ötztale-Stubai-Kristallins gebunden.

Geologisches Profil durch die Rinnerspitze mit der Schneeberg Synklinale, Rosarot=Ötztal-Stubai-Kristallin (Porphyroblastenschiefern), Grau= Mineralreiche Glimmerschiefer, Violett=Permomesozoische Auflage. Carta Geologica d’Italia, Foglio“Merano“.

Zum Abbau wurde die Knappensiedlung St. Martin an der Schneeberger Weissen auf 2.300 Meter Seehöhe gegründet. Der Bergbau war mindestens 800 Jahre aktiv, bis er zwischen 1979-85 eingestellt wurde und 1992 in ein Schaubergwerk umgewandelt wurde. Brandhorizonte und Silexfunde weisen darauf hin, dass die Gegend auch von prähistorischen Menschen aufgesucht wurde, ob schon zur Erzgewinnung ist ungewiss.

Das „Himmelreich“ mit den vermutlich ältesten Spuren von Bergbau am Schneeberg. Hier wurde nachweislich Kupferkies mit Holzkeilen, eine uralte Bergbautechnik, abgebaut.

Die ältesten gesicherten Zeugnisse für Bergbau in Südtirol konnten in Klobenstein am Ritten nachgewiesen werden, wo Tonscherben, Klopf- und Reibsteine und Schlackenreste („Klingelsteine“) auf 1.200-1.000 v. Chr. datiert wurden. Der Bergbau am Schneeberg wird um 1237 zum ersten Mal urkundlich erwähnt, wobei der Silberabbau aufgrund des geringen Silberanteils schon damals kaum noch rentabel war. Der Abbau von Blei wurde ab Mitte des 15. Jahrhundert immer bedeutender, da das Silber von Schwaz in Nordtirol nur mit Hilfe des Bleis vom Schneeberg aus dem Erz ausgetrieben werden konnte. Der Tiroler Bergbau erlebte daraufhin einen Aufschwung und in wenigen Jahrzehnten erlangte er europäische Bedeutung (besonders um 1560/1570). Am Schneeberg waren um 1486 nicht weniger als 1.000 Knappen im Bergbau beschäftigt, zunächst im Abbau von Bleiglanz und schließlich Zinkblende, die nach 1870 das Haupterz am Schneeberg war.

Halden mit Abraum am Schneeberg.
Mit Blendegestein werden volkstümlich alle Schwefelverbindungen (Sulfide) bezeichnet die im Mittelalter nicht verwertet werden konnten. Am Schneeberg sind das hauptsächlich Bleiglanz und Zinkblende. Anthophyllit, strahlig, braun- beige, überkrustet und verwachsen mit Zinkblende und Bleiglanz.
Erzhalden an der Seemooser Lache, die in der Sage um die Entstehung des Bergbau am Schneeberg erwähnt wird.
Stollenausbau.
Erzhöffiges Gestein.
Stollenmundlöcher und Halden am Seemoos.

Literatur:

Tunnelbau in den Alpen

„Als noch drei Ellen zu durchstechen waren, so vernahm man die Stimme des einen, der dem anderen zurief, denn es war ein Spalt im Felsen … Und am Tage der Durchstechung schlugen die Steinhauer entgegen, Hacke auf Hacke.“

Beschreibung des Durchschlags des Soloha-Tunnels in Israel, der vor 2.700 Jahren als Bewässerungskanal angelegt wurde.
Der Bau des Mont-Cenis-Tunnels zwischen Italien und Frankreich.

Kein anderes Hochgebirge der Erde ist von so vielen Tunnels durchzogen wie die Alpen. Es existieren mehr als 720 Kilometer Tunnellänge. Bereits in der frühen Bronzezeit wurden Stollen und Schächte angelegt für den Abbau von Kupfererz. In Nordtirol wurde ein 25 Meter langer Schacht auf ein Alter von 2.800 Jahren datiert. Die aufwendigen Anlagen für Erzabbau und –schmelze weisen darauf hin, dass hier professionelle Bergleute am Werk waren. Knochenreste zeigen weites an, dass sie gut versorgt wurden, mit Fleisch von Schwein, Schaf, Ziege und Rind (wobei Ochsen auch als Zugtiere verwendet werden konnten). Überraschenderweise war der konventionelle Vortrieb, mit Hammer, Meißel und Muskelkraft, noch weit bis ins 17.Jahrhundert üblich. Erste Versuchssprengungen mit Schwarzpulver wurden um 1627 durchgeführt. Der 1679-1681 ausgeführte Malpas-Tunnel in Frankreich war der erste durch Sprengungen aufgefahrene Verkehrstunnel. Im Jahr 1857 wurden am Mont-Cenis-Tunnel zwischen Frankreich und Italien zum ersten Mal hydraulische Bohgeräte eingesetzt und in 1867 erfand Alfred Nobel das Dynamit, das sicheren Sprengstofftransport und Sprengungen im Berg ermöglichte.

Tunnelbohrmaschine um 1881.

Franz von Rziha verfasste in 1872 das umfassende „Lehrbuch der gesammten Tunnelbaukunst“ und führte mit der „Gesteinsclassification für Tunnelbauten“ die sieben Gesteinsklassen ein, die auch noch heute im Tunnelbau zur Anwendung kommen um das Gebirge nach geotechnischen Gesichtspunkten einzuteilen – denn mineralogisches Gestein ist nicht gleich geotechnisches Gestein.

Es giebt, um thatsächliche Beispiele anzuführen, Kalk- und Sandsteine, die vom Mineralogen mit einem und demselben Härtegrad belegt und von ihm in ein und dieselben Klasse gereiht werden, welche aber der Gewinnungsarbeit so verschiedenartige Aufwand abringen, dass jene Fälle nicht selten sind, wo die Gewinnungskosten in einem Falle noch einmal so viel, als in dem anderen betragen.

Die Alpen bestehen aus einem Stapel von bis zu 15 Kilometer dicken Decken, die um 10 bis 200 Kilometer über das darunter liegende Grundgebirge geschoben wurden. Große Störungszonen und Falten kennzeichnen daher das Gebirge. Wenn ein Tunnel aufgelockerten Fels durchörtert, kann der Fels sich lösen und in den Tunnelquerschnitt eindringen. Geologen erstellen daher ein geologisches Modell, um Schwächezonen rechtzeitig zu erkennen. Die Tunneltrasse kann dann angepasst werden, z.B. Störungszonen vermieden werden oder bestimmte Tunnelabschnitte werden mit Stahlbögen und Gebirgsankern verstärkt. Der im Jahr 1911 fertiggestellte 13.735 Meter lange Lötschbergtunnel in den Schweizer Alpen, war der erste Tunnel, bei dem geologische Vorerkundungen durchgeführt wurden.

Der bisher längste Tunnel in den Alpen ist der 57 Kilometer lange Gotthard-Basistunnel, der 2016 fertiggestellt wurde. Auch hier mussten mehrere Störungszonen durchörtert werden. Wenn der Brenner-Basistunnel im Jahr 2026 fertiggestellt wird, wird er mit einer Länge von 64 km die längste unterirdische Eisenbahnverbindung der Welt sein. Der Tunnel hat im Jahr 2014 die Periadriatische Naht durchörtert, eine der größten Störungszonen in den Östlichen Alpen.

Gneis-Block aus dem Gotthard Basistunnel – der helle Leventina-Gneis geht im Bereich des Gotthardmassivs zum dunkleren, stark verfalteten Lucomagno-Gneis über.

Literatur:

  • RZIHA, F. (1872): Lehrbuch der gesammten Tunnelbaukunst. Ernst & Korn Verlag: 900