Geological Star Trek Review – „Where No Man Has Gone Before“

„Enterprise Log: Captain James Kirk commanding. We are leaving that vast cloud of stars and planets which we call our galaxy. Behind us: Earth, Mars, Venus, even our sun are specks of dust. A question: what is out there in the black void beyond? Until now our mission has been that of space law regulation, contact with Earth colonies and investigation of alien life. But now, a new task; a probe out into where no man has gone before.“

Opening narration by Captain Kirk in the original cut of the pilot of the series.

„Where No Man Has Gone Before“ was the second pilot produced for Star Trek The Original Series, as the first pilot „The Cage“ was rejected at first by TV executives, and actually the third episode ever broadcast. Actor Leonard Nimoy was recast as Mister Spock, but it is the very first time William Shatner plays Captain James R. Kirk.

The spaceship Enterprise is patrolling the outer barrier of the galaxy, when a distress signal from the spaceship Valiant, lost over two centuries before, is received. Following the signal, they soon encounter an energy field. As they try to fly into the field, impulses of unknown energy hit some members of the crew, apparently causing some sort of accelerated evolution. Both Kirk’s friend and helmsman Gary Mitchell and ship’s psychiatrist Dr. Elizabeth Dehner quickly develop god-like psychic powers, threatening to destroy the Enterprise. As there is no way to control Mitchell, Kirk decides to leave him stranded on the nearby planet Delta Vega, a planet similar to Earth except its slightly smaller size, with an automated lithium cracking station operating there.

The matte painting of the „lithium cracking station“ on Delta Vega.

Mining an extraterrestrial world is still fiction today, but science shows that it may be profitable in the future. Asteroids are rich in rare elements like platinum, iridium, palladium, and gold. One hundred tons of rock from an asteroid might today be worth more than 9.000 dollars, compared to just 60 dollars worth the same amount of terrestrial rocks. An estimated 5.000 to 10 million asteroids can be found near Earth’s orbit and companies are already dreaming of future prospecting missions and mining spaceflights. Mining asteroids would not necessarily benefit Earth, as bringing the ore to Earth would be extremely costly, but might benefit nearby colonies, outposts, or industrial complexes in space.

The mentioned lithium, a real element, will in later episodes be replaced with the fictional dilithium. In the Star Trek universe, this mineral is not only a rare and valued gemstone known also as Radan, but it is used in matter-antimatter reactors powering spaceships. Its (supposedly) cubic crystal structure can somehow transform energy and control the flow of antimatter. This science-fiction property of the crystalline dilithium may seem far-fetched, but some real crystals – such as calcite – can filter or distort certain wavelengths of light, a form of energy.

Meanwhile, Mitchell escapes from his prison in the cracking station. Dr. Dehner is able to distract and injure Mitchell but is killed during the fight. Kirk must face the injured and weakened, but still dangerous Mitchell. After a hand-to-hand battle in the mountains and a ripped shirt, Kirk uses a phaser rifle to trigger a rockslide killing Mitchell and saving his ship.

The set of the barren and rocky landscape used to show the planet’s surface was recycled from the rejected original pilot. Desert planets like Delta Vega are among the most visited by the Enterprise crew, a plot device to limit needed film sets and costs. In 79 episodes of Star Trek TOS, the Enterprise explores the geology of many planets, sometimes inhabited by humanoids or by alien lifeforms. The classification of planets in the Star Trek universe is based on size (gas giants or small, rocky worlds), composition (rock-metal core or gas), geological activity (inactive- active), atmosphere (from oxygen-rich to toxic) and comprises fourteen planet types. For example, planets suitable for humanoid lifeforms, small, rocky worlds with some geological activity and an oxygen-rich atmosphere, are classified as M after Minshara, the native name of Vulcan, homeworld of Commander Spock.

The first episode of Star Trek aired September 8, 1966, three years before the first manned Moon landing. Virtually nothing was known about the geology of other worlds. Yet the authors of Star Trek display a lot of imagination in creating exotic worlds and got many things right. In later episodes the Enterprise will explore ice worlds and lava planets. Small ice moons are very common in our solar system and the Jupiter moon Io is geologically very active, with its surface covered in sulfuric lava.

Literature:

  • NOOR, M.A.F. (2018): Live Long and Evolve – What Star Trek Can Teach Us about Evolution. Princeton University Press: 208
  • STEVENSON, D.S. (2018): Granite Skyscrapers – How Rocks Shaped Earth And Other Worlds. Springer: 386

Sagenhaftes Südtirol: Geologie und die Bleichen Berge

De ròba vèyes
e de prùmes tèmpes
ay ò aldì
e vo kantè bayèdes!

Von alten Dingen
und von alten Zeiten
hab ich gehört
und will ich nun erzählen!

Spruch der ladinisches Cantastòries
Die Geislergruppe im Grödental.

Mythen und Sagen sind ein früher Versuch des Menschen, Unverständliches verständlich zu machen. Die Eigenart der Dolomiten, mit ihren hoch aufragenden Gebirgsstöcke umsäumt von sanften, Gras bewachsenen Böden dazwischen, regte die Phantasie der Menschen an. Lange bevor die moderne Geologie die Eigenart der Dolomiten auf Gesteinsbildung (Lithogenese), Gebirgsbildung (Orogenese) und Oberflächen- und Landschaftsbildung (Morphogenese) zurückführte, erklärten sich die Ladiner die Geburt der Bleichen Berge folgendermaßen:

Vor langer Zeit heiratete der Königssohn eines vergessenen Reiches im Gebiet der heutigen Alpen die Mondprinzessin. Die beiden liebten sich über alles, doch konnte der Prinz das gleißende Licht das auf dem Mond herrschte kaum, seine Gemahlin den Anblick der grauen Felsen und dunklen Wälder in den Bergen überhaupt nicht ertragen. An ein gemeinsames Leben war nicht zu denken und so trennten sich die beiden Liebenden schweren Herzens.

Eines Tages, als der unglückliche Prinz wieder einmal allein im Wald umherirrte, traf er den König der Zwerge, der nach Siedlungsland für sein Volk Ausschau hielt. Nachdem er sich die traurige Geschichte angehört, versprach der Zwergenkönig dem jungen Prinzgemahl im Austausch gegen die Erlaubnis, sich mit seinem Volk in den Wäldern häuslich nierderzulassen, die Berge des Reiches der Dolomiten in hellem Glanz erscheinen zu lassen. Der Bund wurde durch Handschlag besiegelt und in der darauffolgenden Nacht fing das Zwergvolk das Mondlicht Strahl für Strahl ein und überzog damit die dunklen Felsen. Mit der Rückkehr der Mondprinzessin kehrte auch das Glück wieder in das Reich der Dolomiten ein.

Die schönsten Sagen aus dem Gadertal (1993)

Im Unterschied zu den Penninikum und Austroalpinen Decken im Norden, mit dem das Südalpin die ehemalige geographische Lage entlang des Kontinentalrandes der Afrikanischen Platte gemeinsam hat, ist das Südalpin durch eine geringe tektonische Verformung (zumeist lokale Überschiebungen) und geringer Metamorphosegrad gekennzeichnet. Während die Randgebiete der Dolomiten von metamorphen, relativ dunklen, Gesteinen wie Phyllite, Glimmerschiefer und Gneise geprägt werden, findet man in den Dolomiten noch große Gebiete mit relativ ungestörten Abfolgen von hellen Kalken und Dolomitgestein.

Die Landschaft der Dolomiten wird durch eine Mineral- bzw. Gesteinsart geprägt, die den Bleichen Berge auch ihren Namen  verdanken: Dolomit. Dolomit ist ein wichtiges Mineral und Gesteinsart – Gebirge wie die Dolomiten, Teile des Apennin und die Dinariden verdanken diesen Mg- haltigen Karbonatgestein ihre karge Schönheit. Die charakteristischen Steilwände einige der bekanntesten Gipfel in den Dolomiten werden von der Hauptdolomit-Formation gebildet – 1876 in die Alpenstratigraphie eingeführt. Es handelt sich dabei um eine bis zu 1.000 Meter mächtige zyklische Abfolge von Dolomitgestein-bänken, die in dem Flachwasserbereich einer ausgedehnten Karbonatplattform der Tethys-See abgelagert wurden. 

Die Conturines im Gadertal mit der geschichteten Hauptdolomit-Formation.

Bis um 1271 wurde die Grafschaft Tirol nur als „Land im Gebirge“ bezeichnet. Ab 1876 setzte sich dann der Name Dolomiten für die veraltete Bezeichnung der Bleichen Berge durch und seit dem ersten Weltkrieg tragen die Dolomiten auch ofiziell diesen Namen. Übrigens der einzige Fall, in dem das Mineral einer Gegend den Namen gab und nicht umgekehrt.

Sagenhaftes Südtirol: Tiere im Sagenschatz des Tiroler Bergbaus

Die schwierige Suche nach Erzadern, neben geologischen Kenntnissen spielt auch Glück eine Rolle, führte dazu, dass das einfache Volk sich den Bergsegen in den Alpen nur durch zauberkundige Wesen oder unheimliche Kräfte erklären konnte – manchmal in der Gestalt von Tieren.

Der Teufel, erkennbar an seinen Bocksfüßen und gespaltenen Hufen, übergibt Knappen das Geheimnis einer reichen Erzader – zum Preis ihres Seelenheils. Aus der „Schweizer Bilderchronik des Luzerner“ des Diebold Schilling (1513).

Tiere spielen in mancher Sage zur Gründung eines Bergwerks eine wichtige Rolle, vor allem in der Steiermark, Tirol und im Salzburgischen Land. Meist sind es Pferde, Ochsen, Ziegen oder Jagdwild die mehr oder weniger zufällig eine Erzader anzeigen. Laut Sage wurde das Erz von Schwaz in Tirol durch einen wilden Stier entdeckt, der mit seinen Hörnern das Erdreich aufwühlte und so die Erzadern bloßlegte. Eine sehr ähnliche Sage erzählt man sich über die Entdeckung des Kupfers bei Prettau.

„Vor langer Zeit trieb ein Bauer einen Stier, den er auf dem Markt gekauft hatte, über den Alpenhauptkamm vom Zillertal ins Ahrntal. Der Bauer hatte seine liebe Not mit dem bösartigen Tier, kaum hatte er es mit dem Stock gebändigt, riss es sich los und stürmte vom Weg. Der Bauer folgte dem Tier, dass in seiner Wut ein großes Loch mit seinen Hörnern in den Boden gegraben hatte. Dem Bauer fielen einige Brocken und vor allem der goldene Glanz des Gesteins auf. Ein örtlicher Schmied bestätigte ihm, dass es sich beim Erzgestein zwar nicht um Gold (wie im Zillertal gefunden) handelte, aber doch um ein wertvolles Gut – nämlich Kupfererz.“

In einer Variante dieser Sage wirft ein Hirte einer störrischen Kuh einen Stein hinterher. Ein Berggeist, der zufällig vorbeikommt, ruft daraufhin aus: „Halt Bua! Da Stoan gilt mehr als d´Kuah!!“ Es stellt sich heraus, dass der Stein aus Erz oder Gold besteht. Selbst Paracelsus, der sich als Mediziner und Alchemist für Metallurgie und Bergbau interessierte, erwähnt diese Sage um 1603.

Halden des ehemaligen Bergbaus am Schneeberg, Passeiertal.

Neben Vieh treten in Sagen auch andere Tiere als zufällige Entdecker von Erzadern auf.

„Ein Graf, der Schlossherr von Straßburg, ritt einmal in das Pflerschtal auf die Jagd. Als er ganz drinnen bei den Felsen war, musste er vom Pferd steigen, um das Wild verfolgen zu können. Er band also den Gaul an einen Baum. Nach Stunden, wie er wieder zurückkam, sah er, dass das Pferd ein Loch in den Boden gescharrt hatte und aus diesem das gediegene Erz hervor funkelte. So wurde die erste Erzader in Pflersch entdeckt.“

Wilde Tiere spielen eher eine indirekte Rolle in den Sagen, wie dieses Beispiel, dass die Entdeckung von Silber am Schneeberg, erzählt:

„Einst zog ein Jäger aus dem Passeiertal in die Berge, um Gamswild und Steinböcke zu jagen. Als er zu Seemoos auf einem Felsblock ruhend die umliegenden Grate nach dem Wild abäugte, sah er plötzlich am Ufer des stillen Alpsees eine Frauengestalt sitzen, angetan mit einem silberschimmernden Kleid. Die winkte den Jäger zu sich und zeigte ihm funkelndes Edelgestein, das in ihrem Schoß lag. All die Schätze wollte sie dem Jäger geben und deren Fundstellen zeigen, wenn er ihr verspreche, abzulassen von der weiteren Jagd des unter ihrem Schutz stehenden Wildes. Sie drohte ihm aber auch mit schwerer Strafe, wenn er seinen Schwur brechen würde, und ebenso plötzlich war sie verschwunden. Der Jäger zerschmetterte seine Armbrust und leistet den Schwur, worauf das Salige Fräulein ihm Spalten voll Silbererz in den Felswänden zeigte. Stollen um Stollen wurden nun eröffnet, und überall fand sich reiches Erz. So viele Knappen wurden am Schneeberg beschäftigt, dass bald ein ganzes Dörflein mitten in der unwirtlichen Bergwelt entstand.“

Auch in Zusammenhang mit dem Verfall eines Bergwerks wird oft über Tiere berichtet, wie das Ende der Sage zeigt:

„In den alten Tagen des Jägers erwachte jedoch wieder die Jagdlust; er verfertigte sich eine neue Armbrust und erlegte an einem Sonntag einen prächtigen Gamsbock. Doch die Strafe folgte sogleich: ein Felsblock löste sich und zermalmte den Frevler unter seinen Sturz. Als die Knappen am nächsten Tag zur Grube kamen, fand sich kein Silbererz mehr, sondern bloß wertloses Blendegestein, das sich nicht schmelzen ließ.“

Alpengams (Rupicapra rupicapra).

Frevel gegenüber der Natur wird dementsprechend bestraft.

„Einst, so eine Sage aus Halle, zogen die verzogenen Knappen von Schwaz, nach einem ausgiebigen Gelage, einem zufällig vorbeikommenden Ochsen aus Jux die Haut bei lebendigen Leibe ab. Die Knappen fuhren danach in die Stollen ein, aber die Strafe für ihren Frevel folgte bald. Die Berggeister erwürgten jeden einzelnen von ihnen und die Stollen füllten sich mit Wasser. Noch heute fließt ein Rinnsal aus dem ehemaligen Bergwerk, noch immer blutrot gefärbt (vielleicht eine Anspielung an Erzauscheidungen aus dem Grubenwasser).“

Der (Rost-)rote Schlamm und die Eisenoxid-Krusten an dieser Quelle im Pfitschtal weißen auf einen hohen Metallgehalt im Gestein hin.

Diese Sage ist in Nord- und Südtirol in verschiedene Varianten, die sich hauptsächlich in den grausamen Details (so wird zusätzlich noch Salz auf den Wunden des Tieres gestreut) unterscheiden, recht verbreitet.

Literatur:

  • HEILFURTH, G. (1968):  Südtiroler Sagen aus der Welt des Bergbaus. An der Etsch und im Gebirge, Band 25: 75
  • PETZOLDT, L. (1990): „Knappentod und Güldenfluss“ zu den Bedingugen bergmännischer Folklore in Tirol. In AMMANN, G. Silber, Erz und Weisses Gold, Bergbau in Tirol, Innsbruck.

Sagenhaftes Südtirol: Schneeberg

Einst zog ein Jäger aus dem Passeiertal in die Berge, um Gamswild und Steinböcke zu jagen. Als er zu Seemoos auf einem Felsblock ruhend die umliegenden Grate nach dem Wild abäugte, sah er plötzlich am Ufer des stillen Alpsees eine Frauengestalt sitzen, angetan mit einem silberschimmernden Kleid. Die winkte den Jäger zu sich und zeigte ihm funkelndes Edelgestein, das in ihrem Schoß lag. All die Schätze wollte sie dem Jäger geben und deren Fundstellen zeigen, wenn er ihr verspreche, abzulassen von der weiteren Jagd des unter ihrem Schutz stehenden Wildes. Der Jäger zerschmetterte seine Armbrust und leistet den Schwur, worauf das Salige Fräulein ihm Spalten voll Silbererz in den Felswänden zeigte. Stollen um Stollen wurden nun eröffnet, und überall fand sich reiches Erz. So viele Knappen wurden am Schneeberg beschäftigt, dass bald ein ganzes Dörflein mitten in der unwirtlichen Bergwelt entstand.

In den alten Tagen des Jägers erwachte jedoch wieder die Jagdlust; er verfertigte sich eine neue Armbrust und erlegte an einem Sonntag einen prächtigen Gamsbock. Doch die Strafe folgte sogleich: ein Felsblock löste sich und zermalmte den Frevler unter seinen Sturz. Als die Knappen am nächsten Tag zur Grube kamen, fand sich kein Silbererz mehr, sondern bloß wertloses Blendegestein, das sich nicht schmelzen ließ

Sage, die in einer handschriftliche Aufzeichnung im Bergwerkshaus zu St. Martin am Schneeberg nacherzählt ist. Hier ist die Fundgeschichte mit dem Motiv der bestraften Freveltat verknüpft, das in den Bergbausagen des alpinen Raumes weit verbreitet ist.

…dimidium loatum boni argenti de Sneberch…

Erste Erwähnung des Bergbaus am Schneeberg in einem Schreiben das auf den 24. Dezember 1237 datiert ist.
Bergwerksgelände mit Aufbereitungsanlagen bei Maiern im Talschluss des Ridnauntal.
Silberbergwerk St. Martin am Schneeberg aus dem “Schwazer Bergbaubuch”, um 1556.
Blick auf die ehemalige Bergbausiedlung St. Martin am Schneeberg mit Reste der Seilbahn zum Materialtransport nach Ridnaun über die Schneebergscharte (2.700 Meter).
Erztransport aus dem Stollen in St. Martin am Schneeberg, um 1905.

Seit jeher suchen die Menschen nach den Schätzen der Erde und versprechen sich davon Reichtum und Glück. Die ersten Erze fand der Mensch an der Erdoberfläche in Form von Ausbissen von unterirdischen Erzlagern. Dass bei diesen ersten Funden wohl der Zufall eine große Rolle spielte belegen auch viele Sagen, wie die vom Schneeberg im Passeier- und Ridnauntal.

Die Blei-Zink-Erzlagen, zumeist Zinkblende (ZnS), Bleiglanz (PbS), Kupferkies (CuFeS2), Magnetkies (FeS), Pyrit (FeS2), streichen am Schneeberg in einer Höhenlage von 2.000 bis auf über 2.500 Meter aus, und sind an die Biotitporphyroblastenschiefern des Ötztale-Stubai-Kristallins gebunden.

Geologisches Profil durch die Rinnerspitze mit der Schneeberg Synklinale, Rosarot=Ötztal-Stubai-Kristallin (Porphyroblastenschiefern), Grau= Mineralreiche Glimmerschiefer, Violett=Permomesozoische Auflage. Carta Geologica d’Italia, Foglio“Merano“.

Zum Abbau wurde die Knappensiedlung St. Martin an der Schneeberger Weissen auf 2.300 Meter Seehöhe gegründet. Der Bergbau war mindestens 800 Jahre aktiv, bis er zwischen 1979-85 eingestellt wurde und 1992 in ein Schaubergwerk umgewandelt wurde. Brandhorizonte und Silexfunde weisen darauf hin, dass die Gegend auch von prähistorischen Menschen aufgesucht wurde, ob schon zur Erzgewinnung ist ungewiss.

Das „Himmelreich“ mit den vermutlich ältesten Spuren von Bergbau am Schneeberg. Hier wurde nachweislich Kupferkies mit Holzkeilen, eine uralte Bergbautechnik, abgebaut.

Die ältesten gesicherten Zeugnisse für Bergbau in Südtirol konnten in Klobenstein am Ritten nachgewiesen werden, wo Tonscherben, Klopf- und Reibsteine und Schlackenreste („Klingelsteine“) auf 1.200-1.000 v. Chr. datiert wurden. Der Bergbau am Schneeberg wird um 1237 zum ersten Mal urkundlich erwähnt, wobei der Silberabbau aufgrund des geringen Silberanteils schon damals kaum noch rentabel war. Der Abbau von Blei wurde ab Mitte des 15. Jahrhundert immer bedeutender, da das Silber von Schwaz in Nordtirol nur mit Hilfe des Bleis vom Schneeberg aus dem Erz ausgetrieben werden konnte. Der Tiroler Bergbau erlebte daraufhin einen Aufschwung und in wenigen Jahrzehnten erlangte er europäische Bedeutung (besonders um 1560/1570). Am Schneeberg waren um 1486 nicht weniger als 1.000 Knappen im Bergbau beschäftigt, zunächst im Abbau von Bleiglanz und schließlich Zinkblende, die nach 1870 das Haupterz am Schneeberg war.

Halden mit Abraum am Schneeberg.
Mit Blendegestein werden volkstümlich alle Schwefelverbindungen (Sulfide) bezeichnet die im Mittelalter nicht verwertet werden konnten. Am Schneeberg sind das hauptsächlich Bleiglanz und Zinkblende. Anthophyllit, strahlig, braun- beige, überkrustet und verwachsen mit Zinkblende und Bleiglanz.
Erzhalden an der Seemooser Lache, die in der Sage um die Entstehung des Bergbau am Schneeberg erwähnt wird.
Stollenausbau.
Erzhöffiges Gestein.
Stollenmundlöcher und Halden am Seemoos.

Literatur:

The Dolomites – beautiful Mountains born from the Sea

The French nobleman Diedonnè-Silvain-Guy-Tancrede de Gvalet, born June 23, 1750, in the village of Dolomieu, was a typical naturalist of his time. At the age of 26, de Dolomieu traveled through Europe, got interested in the mines of the Bretagne and the basaltic plateaus in Portugal, visited Italy to study the aftermath of an earthquake and to observe the erupting Mount Etna in Sicily. In 1789 he also visited Tyrol. At the Brenner Pass and between the cities of Bozen and Trento he noted a rock similar to limestone. However, unlike limestone, this rock showed no reaction with acids. He published this observation in July 1791 in a letter to the Journal of Physique.
Nicolas Theodore de Saussure, son of famous Swiss alpinist Horace Benedict de Saussure, requested some samples to analyze the chemical composition of this new kind of rock. In 1792, de Saussure published the Analyse de la Dolomie.

Dolomite the mineral.

The first mention of the Dolomites is found in the 1846 book The Horns of the Dolomite Mountains. Later the two alpinists Josiah Gilbert and G.C. Churchill helped to popularize the new name with their mountain climbing guide The Dolomite Mountains, published in 1864. The name Dolomites became popular after 1876, and was oficially adopted for the region after World War I.

Dolomites the mountains.

The geological genesis of the Dolomite Mountains was one of the great mysteries of the world. Fossils provided clues that the rocks composing the mountains were formed once in the sea, but in these early days of geology, almost nothing was known about the bottom of the sea and sedimentation in oceans.

In June 1770 the British explorer James Cook discovered, not entirely voluntarily as his ship the HMS Endeavour collided with it, the Great Barrier Reef of Australia. Here apparently gigantic mountains of limestone were formed by coral polyps and other marine organisms. But how could these mountains rise from the bottom of the sea and form a landscape on dry land?

Section of fossil corals.
Modern coral reef.

In 1772, during the second voyage of Cook, the German naturalist Georg Forster visited the atolls and volcanic islands of the Pacific Ocean. Forster observed that corals live in the first meters of the sea, but outcrops on land showed that the limestone produced by the coral polyps can be almost 300-600 meters thick. He developed a hypothesis to explain this observation. The corals grow slowly from the bottom of the sea until reaching the surface, where erosion levels the reef to form the plain surface of an atoll, then violent volcanic eruptions push the reef above sea level.

Almost fifty years later, another naturalist became intrigued by the mysterious connection between volcanoes, corals and atolls. During his voyage on board HMS Beagle, a young geologist named Charles R. Darwin studied Lyell’s Principles of Geology and the chapter about reefs in the Pacific stimulated his imagination. In February 1835, Darwin experienced a powerful earthquake in Chile and shortly afterward noted evidence of several meters of uplift in the region. According to Lyell’s view, Darwin imagined that mountains could rise and sink over time. Based only on the description in the book of atolls and assuming slow movements of the surface of the Earth, Darwin developed a preliminary hypothesis to explain the formation of atolls in the middle of the sea.

„No other work of mine was begun in so deductive a spirit as this; for the whole theory was thought out on the west coast of S. America before I had seen a true coral reef. I had therefore only to verify and extend my views by a careful examination of living reefs. But it should be observed that I had during the two previous years been incessantly attending to the effects on the shores of S. America of the intermittent elevation of the land, together with the denudation and deposition of sediment. This necessarily led me to reflect much on the effects of subsidence, and it was easy to replace in imagination the continued deposition of sediment by the upward growth of coral. To do this was to form my theory of the formation of barrier reefs and atolls.“

Darwin recognized that the animals forming the corals needed sunlight, so the corals couldn’t grow on the dark bottom of the sea. He imagined that corals would colonize extinct volcanoes. As the volcanic islands slowly erode they sink into the sea. These movements are slow enough to enable the corals to compensate the subsidence and keep living near the surface of the sea, where plenty of light and nutrients are available. Darwin’s hypothesis was very speculative, based only on superficial observations – there was simply no way to study the shape and base of coral reefs at the time.

American geologist James Dwight Dana, who in 1838-1842 visited the Pacific, confirmed most of the observations of Darwin. Important modifications to the reef-theory were added in 1868, when the German zoologist Carl Semper studied atolls. In 1878 and 1880 the oceanographer John Murray published his observation made during the Challenger-Expedition (1872-1876) on the islands of Palau and the Fijis. He postulated that reefs grow on submarine elevations of any kind if they are high enough, not only volcanoes. This new theory was strongly supported and improved over time by geologists. Atolls grow up from shallow submarine elevations of various origins. Corals in the middle of the reef will die due the reduced circulation of water, then the calcareous skeleton of the reef building organisms is dissolved by the agents of erosion. In the end a lagoon and the characteristic shape of an atoll forms.

Such observations of living reefs in the tropical seas provided new impulses to interpret the geological relationships in the Dolomites. In 1860 the Austrian geologist Baron Ferdinand F. von Richthofen visited and studied the Dolomites. He discovered that the sandstone and tuff deposits, surrounding the isolated peaks of dolostone, contained large limestone boulders, some containing still recognizable fossils of corals. Based on the theory of evolution of a reef as proposed by Darwin, Richthofen suggested that the isolated peaks were the intact remains of an ancient reef, still surrounded by clastic sediments of an ancient basin, in which, from time to time, landslides from the steep slopes of the reef deposited large boulders of corals.

Upper Triassic basinal succession. Notice the gradual transition between the volcanoclastic Wengen Fm (below,darker) and the more carbonatic S. Cassiano Fm. In the background the cliffs of Cassian Dolomite platform.
Clinostratification/Slope -bedding in the outer parts of the carbonate platforms of the Dolomites (after MOJSISOVIC 1879). Scheme of bedding on the flanks of carbonate platforms and examples of flank and basin deposits from the Sciliar/Schlern platform. Note the abundant limestone boulders in the basin sediments.

The young geologists Edmund Mojsisovics von Mojsvar developed further this reef hypothesis, mapping in detail the relationships between the single facies, ranging from the lagoon of the atoll to the open sea. Massive, many thousands of meter thick reefs of dolostone changed suddenly to well-bedded carbonates, deposited in a central shallow lagoon. The former slope of the reef was composed of tongues of reef debris interbedded within sandstones, shale and basalts deposited on the bottom of the sea. Such strong sedimentary facies changes were until then considered impossible. The reconstruction of the Dolomites as an ancient atoll landscape seemed so radical, Mojsisovics was forced to find a private publisher for his revolutionary work.

Settsass and Piccolo Settsass, also known as Richthofen-Riff. Here a Triassic reef with clinostratification into basin sediments (St. Kassian-Fm; Wengen-Fm, brown sandstones/shales/marls) is exposed by erosion.
Geological drawing of the Richthofen-Riff. Figure by MOJSISOVICS 1879.

The origin of the Dolomite Mountains as fossil reefs recalls the birth of Venus. Like the ancient goddess of beauty, the Dolomites were born out from the sea.

The Rosengarten Group by Josiah Gilbert, from Gilbert & Churchill’s “excursions through Tyrol, Carinthia, Carniola, & Friuli in 1861, 1862, & 1863 including a geological chapter, and pictorial illustrations from original drawings on the spot.”

References:

  • DOBBS, D. (2005) Reef Madness: Charles Darwin, Alexander Agassiz and the meaning of coral. Pantheon Books: New York
  • FISCHER, A.G. & GARRISON, R.E. (2009): The role of the Mediterranean region in the development of sedimentary geology: a historical overview. Sedimentology 56: 3-41
  • SCHLAGER, W. & KEIM, L. (2009): Carbonate platforms in the Dolomites area of the Southern Alps – historic perspectives on progress in sedimentology. Sedimentology 56: 191-204

Erzpflanzen in den Alpen

Denn der Bergmann muß in seiner Kunst die größte Erfahrung besitzen, so daß er erstlich weiß, welcher Berg oder Hügel, welche Stelle im Tal oder Feld nutzbringend beschürft werden könne, oder ob er auf die Schürfung verzichten muß.“

Zwölf Bücher vom Berg- und Hüttenwesen„, I. Buch

Die Pflanzenwelt ist das Kleid der Erde, das als lebende und belebende Hülle ihre tote Masse bedeckt, die Starrheit ihrer Formen mildert und jeden Teil der Bergwelt recht eigentlich erst einen Reiz verleiht. Sie ist es, die unsere Matten gleich einen üppigen musterreichen Teppich vor die schroffen Felswände hinbreitet und die uns oft in den steilsten Gesteinsformationen noch mit zierlich prangenden Blüten erfreut – dort, wo jeder Pflanze  des Tieflandes der Standort zu eisig, der Hang zu steil und der Fels zu hart wäre. Mit auffallender Mannigfaltigkeit und mit seltenem Reichtum an Formen tritt die alpine Flora in den Bergen auf und erschließt ihre farbensatte Schönheit jedem, der sich ihr liebevoll naht, jedem, der in den niedlichen Kindern des Blumenreichs seine Aufmerksamkeit zuwendet. Wollen wir doch in Hinkunft nicht allein mit Bewunderung, sondern auch mit verständnisvoller Betrachtung uns mit den Eigenheiten der alpinen Flora beschäftigen, den tausendfältigen Beziehungen zu ihrer engeren und weiteren, zu ihrer toten und lebendigen Umgebung Aufmerksamkeit schenken – geleitet von dem Gedanken, daß die Alpennatur in ihrer ganzen Größe nur der richtig verstehen kann, der dieselbe auch im Kleinen, in ihrer Einzelheiten beachtet und betrachtet!

„Klimatisch-geologische Abhängigkeit der alpinen Flora“, Franz Tursky

Bereits prähistorische Prospektoren müssen gewisse Hinweise an der Oberfläche, die auf verborgene Schätze in der Tiefe hinweisen können, aufgefallen sein. Verwitterungsresistente Gesteine die Erz enthalten, wie z.B. Dolomit, konnten als Härtlinge in der Landschaft auffällige Formen bilden. Die Stelle, an der eine Erzader an die Oberfläche kommt, nennt der Bergmann Ausbiss oder aufgrund der rostigen Färbung auch Eiserner Hut. Ausbisse in einem Bachbett, in einer Erosionsrinne oder durch einen Hangrutsch freigelegt, Lesesteinkartierung im Hangschutt unter Felswänden, chemische Ausfällungen in Bächen, der metallische Geschmack von Quellen sowie Wachstumsanomalien oder bestimmte Pflanzenarten im Gelände können auf Erzadern hinweisen. 

Der metallische Geschmack des Wassers, aber vor allem der (Rost-)rote Schlamm und die Eisenoxid-Krusten weißen auf einen hohen Metallgehalt im Gestein hin.

Das Lesen dieser Hinweise schien Unkundigen oft geheimnisvoll. Dieses Wissen wurde im Mythos oft als Hexerei, oder zumindest Wissen das nur mit der Hilfe von zauberhaften Gegenständen zu erreichen war, verklärt.

Im Alpenraum spielen Sagen um die geheimnisvollen Venedigermandl eine große Rolle. Diese anscheinend italienischen Erzsucher besaßen große Kenntnisse, aber auch zauberhafte Utensilien wie den Bergspiegel, mit denen sie sozusagen in den Berg hineinschauen konnten. Der Ursprung dieses sagenhaften Werkzeugs ist nicht ganz geklärt. Vielleicht beruht es auf die Fähigkeiten der Prospektoren aufgrund Verfärbungen oder Strukturen an einer (glatten) Fels- oder Bergwand die Erzadern zu finden.

Georgius Agricola erklärt in seinem Textbuch „De re metallica“ wie die natürlichen Hinweise auf Erzadern im Gelände zu finden und zu beurteilen sind – darunter auch bestimmte Pflanzen.

Schließlich muß man auf die Bäume achten, deren Blätter im Frühling bläulich oder bleifarben sind, deren Zweigspitzen vornehmlich schwärzlich oder sonst unnatürlich gefärbt sind … auch wächst auf einer Linie, in der sich ein Gang erstreckt, ein gewisses Kraut oder eine gewisse Pilzart … dies sind die Hilfsmittel der Natur, durch die Gänge gefunden werden

Kümmerwuchs von Pflanzen, verursacht durch die Toxizität bestimmter Schwermetalle und Erze im Boden, wurde auch von anderen Gelehrten beschrieben. So listet Georg Grandtegger um 1731 bei der Beschreibung des Prettauer Kupfer-Bergwerks auf, dass:

Wenn das Gras oder die Kräuter auf der Erde nicht die rechte Farbe haben oder vor der Zeit verdorren und wenn die Erde kein Gras trägt, so ist das ein Zeichen, daß darunter Erz zu finden ist.“

Findet man Bäume in einem Wald, die ihr Laub vor der rechten Zeit färben oder Mißbildungen in den Wipfeln aufweißen, so ist das ein Zeichen, daß darunter Erz zu suchen ist.“

Findet man alte Baumstöcke in der Erde, die ganz dürr und noch frisch sind, so ist das ein Zeichen von Erz.

Wenn eine Wassergisse ein Gebirge abbläst, soll man schauen, ob ein Baum samt der Wurzel umgefallen ist. Er deckt oft Erz ab.“

Der deutsche Arzt und Botaniker Johannes Thal (1542-1583) beschreibt in seinem „Sylva Hercynica“ die Frühlings-Sternmiere Minuartia verna als Pflanze die wiederholt an erzhöffigen Standpunkten vorkommt. Der Italiener Andrea Cesalapino beschreibt die, heutzutage treffend bezeichnete, Steinkraut-Art Alyssum bertolonii von Serpentinit-Vorkommen im Bereich des Tiber, eine der ersten publizierten geobotanischen Beobachtungen überhaupt. Allerdings wird oft noch kein Zusammenhang zwischen Gestein und Vegetation hergestellt. Der Humusgehalt der verschiedenen Böden wird als bestimmender Faktor des Pflanzenwuchs angenommen. In 1789 bemerkt der Naturwissenschaftler Heinrich Friedrich Link (1767-1851):

…dass die Pflanzen, die auf trockenem Kalkboden vorkommen, von den anderen, die auf feuchtem tonigem Boden entstehen, verschieden sind.

Der französische Naturforscher Jean-Ètienne Guettard, der auf der Suche nach medizinisch interessanten Kräutern war, bemerkte eine Verteilung der Pflanzen auf bestimmte Gesteinsarten. In 1780 publizierte er mit diesen Daten in seinem „Atlas et Description Minéralogiques de la France” eine Art geologische Karte. Aber erst der österreichische Arzt und Botaniker Franz Unger (1800-1870) stellt in seinem 1836 publizierten Werk „Über den Einfluß des Bodens auf die Verteilung der Gewächse“ einen direkten Zusammenhang zwischen Vegetation, Boden und Gestein fest. Er billigt den chemischen Eigenschaften des Bodens eine entscheidende Rolle zu und unterscheidet Kalkpflanzen und Tonschiefer- oder Kieselpflanzen. Bereits zwei Jahre später veröffentlicht G. F. Ruehle ein umfangreiches Verzeichnis von „kalksteter“ und „urgebirgssteter“ Arten im Alpenraum. Um 1882 wird schließlich der Begriff Erzpflanzen, um 1926 „Schwermetallpflanzen“ bzw. um 1963 „Metallophyten“ eingeführt, also Pflanzen die hohe Metallkonzentrationen im Untergrund tolerieren.

Schwermetalle, die aus den Abraumhalden des Bergbaus in den Boden gelangen, behindern das Wurzelwachstum, sodass die Pflanze abstirbt. Häufig ist in unmittelbarer Umgebung von Erzlagerstätten die Bodenchemie verändert, durch Sulfide oder Schwermetalle verseucht oder der Boden ist sehr nährstoffarm. Besonders toxische Elemente für Pflanzen sind Blei, Kupfer, Cadmium, Zink, Nickel, Chrom und Kobalt. Es kann daher in diesen Bereichen zu Kümmerwuchs, schütteres Gras oder das Fehlen von anspruchsvollen Baumarten wie Lärche, Tanne und Buche kommen. Manche Pflanzen – Metallophyten oder Zeigerpflanzen – tolerieren hohe Metallkonzentrationen. Solche bodenanzeigende Pflanzen reagieren offenbar mit der Bildung bestimmter Proteine in ihren Zellwänden auf Schwermetalle. Diese binden die Metalle und schirmen sie ab und schützen so die Zellfunktionen. So gilt das Vorkommen bestimmter Wildpflanzen als sicheres Zeichen für Erzlagerstätten dicht unter der Erde.

Zeigerpflanzen oder spezielle Pflanzenassoziationen können direkt auf Erzspuren im Boden hinweisen, selbst bei schlechten Aufschlussverhältnissen. Wichtige Erzpflanzen, die auch der Geologe kennen sollte, sind das Taubenkropf-Leimkraut (Silene vulgaris und – inflata), die Schaumkresse (Arabidopsis halleri), das Stiemütterchen (Viola sp.), die Grasnelke (Armeria sp.) und die Frühlingsmiere (Minuartia sp.). Am Schneeberg tritt das Alpenleinkraut (Linaria alpina), Alpenmiere (Minuartia gerardii), Einblütige Hornkraut (Cerastium uniflorum) und der Rote Steinbrech (Saxifraga oppositifolia) auf Bleiglanz, Zinkblende und Kupferkies-haltigen Erzboden auf.

Seit jeher schürfen die Menschen nach den Schätzen der Erde und versprechen sich Reichtum und Glück. Generationen von Knappen und Bergleuten gruben tiefe Stollen in die Berge auf der Suche nach Edelmetallen und Erzgestein. Noch heute prägen Abraumhalden die Hochebenen. Die Halden werden von Erzpflanzen besiedelt , wie hier in Ridnaun durch das Alpenleinkraut (Linaria alpina).
Alpenmiere (Minuartia sp.).
Alpen-Frühlings-Miere (Minuartia gerardii), Erzhalde Schneeberg.
Felsen-Leimkraut (Atocion rupestre), Erzhalde Schneeberg.

Literatur:


Goethe und die Geologie der Alpen

„Steine sind stumme Lehrer, sie machen den Beobachter stumm, und das beste, was man von ihnen lernt, ist nicht mitzuteilen.“

„Wie mir auch Mineralogie und das bischen botanischer Begriff unsäglich viel aufschliesen und mir der eigentlichste Nutzen der Reise bis jetzt sind.“

J.W. von Goethe

Johann Wolfgang von Goethe (1749-1832) ist heute als Autor und Dichter weltbekannt, nebenher betätigte er sich aber auch als Anwalt, Politiker, Künstler und als begeisterter Geologe. Im Laufe des Jahres 1785 plante Goethe einen „unbestimmten Urlaub,“ um „der freyen Lufft und Welt geniessen, mich geistlich und leiblich zu stärcken.“

Es sollte eine Reise nach Rom werden. Über Karlsbad, Regensburg und München ging es zunächst Richtung Alpen. Auf alten Handelsrouten über Kochelsee, Walchensee und Seefeld querte man die Nördlichen Kalkalpen und erreichte Innsbruck.

„Die duncklen mit Fichten bewachsnen Vorgründe, die grauen Kalckfelsen, die höchsten weisen Gipfel auf dem schönen Himmelsblau, machen köstliche, ewig abwechselnde Bilder.“

Während der Reise werden auch Gesteine beschrieben, ihre Lagerung fest­gehalten, Proben aufgesammelt und eine Profilskizze quer durch den Alpenkörper angefertigt.

Er beschreibt die vorherrschende Gesteinsfarbe, die typische Lagerung in verschie­den mächtigen Bänken, welche die einzelnen Formationen charakterisieren und spricht auch die durch die geologischen Bewegungen hervorgerufene Faltung ebenso an wie die durch die unterschiedliche Verwitterung der verschiedenen Gesteine bedingte Geomorphologie.

„Ich habe schon gesagt daß ich bisher die Kalck Alpen durchwandert habe. Sie ha­ben ein Graues Aussehen und schöne unregelmäßige Formen ob sich der Fels gleichauch in Lager und Bänke abtheilt. Aber weil auch geschwungene Lager Vorkommen und der Fels überhaupt ungleich verwittert; so sehen die Gipfel seltsam aus.“

Goethe beschreibt die Gesteine bei Innsbruck als „Kalck, von dem ältesten der noch keine Versteinerungen enthält.“ Er glaubt, dass sich die Kalkalpen vom Gotthard bis nach Dalmatien ziehen. Goethe konnte noch nichts über die Dreiteilung der Alpen in Nördliche Kalkalpen-Zentralalpen-Südliche Kalkalpen wissen, die erst 1791 durch den französischen Alpinisten und Naturforscher Belsazar Hacquet eingeführt wurde.

Von Innsbruck aus ging es dann Richtung Brenner, wo Goethe am 8. September 1786 ankommt. Es folgt die Beschreibung des Überganges in die kristallinen Gesteine der Zentralalpen mit Marmoren, Glimmerschiefern und Gneisen.

In seinem Tagebuch, wo er für eine spätere Veröffentlichung die Eindrücke der Reise festhält, schreibt er über die metamorphen Gesteine des Wipptales bis zum Brenner:

„Glimmerschiefer und Quarz durchzogen. Stahlgrün und dunkelgrau. An denselben lehnte sich ein weißer, dichter Kalkstein, der an den Ablösungen glimmerig war und in großen Massen, die sich aber unendlich zerklüfteten, brach. Oben auf dem Kalkstein legte sich wieder Glimmerschiefer auf, der mir aber zärter zu sein schien. Weiter hinauf zeigte sich eine Art Gneis oder vielmehr eine Granitart, die sich zum Gneis umbildet.“

Hier sammelt Goethe „wenige Stücke einer Art Gneis“ und beschreibt, laut moderner geologischer Karte, wahrscheinlich den Übergang vom Innsbrucker Quarzphyllit zu den metamorphen Kalkschiefern und Marmorlagen der Tauernschieferhülle und Zentralgneise.

Die Geologie entlang der Reiseroute Goethes, vom Oberostalpinen Kristallin entlang des Tauernfensters ins Südalpin. Zangerl, F. (1940): Der Heimatboden – Die Geologie in der Heimatkunde von Tirol.
Tauernschieferhülle in der Nähe des Brenners, mit Bündner Schiefer, Kaserer Serie (Schiefergestein, links im Bild), Hochstegen-Zone (Dolomit- & Kalkmarmor, Bildmitte) und Zentralgneise (rechts im Bild).
Kalkphyllite-Kalkschiefer mit Zentimeter-mächtigen Quarzlagen, Aufschluss am Brenner.
Glimmerreicher Marmor mit Quarzknauern der Hochstegen-Zone.

Goethes Geologie wurde stark durch die Lehren des deutschen Mineralogen Abraham Gottlob Werner (1749-1817) geprägt. Laut Werner bildeten sich alle heute erkennbaren Gesteinsarten in einer bestimmten Reihenfolge durch Auskristallisation aus einer wässrigen Urlösung. Das älteste Gestein war Granit, gefolgt von verschiedenen metamorphen Gesteinen und Sedimenten. Im Herbst 1779 traf Goethe während seiner Schweizer Reise den Naturforscher Horace Benedict de Saussure. De Saussure, der später als einer der ersten Forscher den Mont Blanc besteigen sollte, berichtete, dass die höchsten Berggipfel aus kristallinem Granit bestehen.

Rekonstruktion einer alpinen Kluft aus dem Granit des Zentralmassiv des Mont Blanc, mit Rauchquarz, seltener Fluorit, Chlorit breitet sich am Boden der Kluft aus. 

Goethe ist verwundert, dass er direkt am Brenner keinen Granit finden kann, wo doch im Kern der Alpen der kristalline Untergrund zutage treten sollte. Er schreibt „daß hier oben nicht ferne der Granitstock seyn muß an der sich alles anlehnt …[]… es wäre eine hübsche Aufgabe für einen jungen Mineralogen“ diesen zu finden. Tatsächlich findet sich einige Kilometer östlich des Brenners der Zentralgneiskern, die europäische Unterkruste der Alpen, der jedoch nicht durch Auskristallisation hier abgelagert wurde, sondern durch tektonische Bewegungen freigelegt wurde.

Geologische Karte und Profil der Pyrenäen, nach Alexander von HumboldtsKosmos“ (1845-1862). Humboldt war wie Goethe Anhänger von Werners Lehre und erklärte Gebirgsbildung auch dementsprechend.  Der Granit (rosa Bereiche) bildet die Unterlage für jüngere Sedimente (blau und gelb). Die Beobachtung, dass der Granit nicht entlang der gesamten Achse des Gebirgszug gefunden werden kann (wie es nach den Modell notwendig gewesen wäre), erklärt Humboldt mit asymmetrischer Erosion der Pyrenäen (unteres Profil).

Am 9. September geht es weiter und noch in der Nacht passiert man Sterzing und Mittewald um bei Tagesanbruch Bozen zu erreichen. Ironischerweise verpasste Goethe so den Brixner Granit, der zwischen Mauls und Franzensfeste ansteht. Diese große Intrusion von magmatischen Gesteinen kennzeichnet die nördliche Grenze des Südalpin. Es wäre interessant gewesen, Goethes Gedanken zu diesen Vorkommen von Granit zu kennen, weit abseits des Alpenhauptkammes gelegen. Rund um Bozen beschreibt Goethe wieder Kalkstein und Glimmerschiefer, von Kollmann bis südlich Bozen stehen Porphyre (Bozner Quarzporphyr) an, die laut Werners Lehre und Goethes Meinung nach nicht vulkanischen Ursprungs sind, wie einige seiner Zeitgenossen behaupteten. Tatsächlich irrt sich Goethe, die Etschtaler Vulkanit-Gruppe ist eine Abfolge von Ignimbriten, pyroklastischen Brekzien, Tuffiten und vulkanoklastischen Sedimenten die vor über 250 Millionen Jahre von heftigen vulkanischen Eruptionen abgelagert wurde.

Bozner Quarzporphyr.

In Bozen ist Goethe schon mehr an die “Dolce Vita” als an Gesteine interessiert und am Gardasee schreibt er:

„Die schönsten und größten Natur Erscheinungen des festen Landes habe ich nun hinter mir, nun gehts der Kunst, dem Altertum und der Seenachbarschaft zu. … Von Bartolino macht ich den Weg über einen Rücken der das Thal worinn der Adige fließt und die Vertiefung worinn der See liegt scheidet. Die Wasser von beiden Seiten scheinen ehmal hier gegeneinander gewürckt und diesen ungeheuren Kiesel Haufen hier aufgethürmt zu haben. … Der Weg von Verona hierher [Vicenza] ist sehr angenehm, man fährt Nordostwärts an den Gebürgen hin und hat die Vorderberge, die aus Kalkck, Sand, Thon, Mergel bestehn.“

Dennoch sammelte er zwischen Innsbruck und Gardasee insgesamt 24 verschiedene Gesteinsarten mit kurzer Beschreibung in seinem Tagebuch und Vermerk des Fundorts.

In seinen späteren Jahren sammelte er auch Mineralien aus Tirol und dem Fassatal. So rühmt er sich in einem Brief an einen italienischen Mineralien-Händler „die wichtigsten Tiroler Mineralien, auch die vom Fassatal, meistens in schönen Exemplaren,“ sein Eigen zu nennen. Weiters Almandine aus dem Zillerthal, Fibrolith (ein fasriger Silimanit) aus der Alpe Lisens im Sellrainer Tal, Asbest auf Quarz, Strahlstein (Aktinolith), Kyanit (vermutlich aus dem Zillerthal), Titanit vom Sellrainer Tal, Gelb Menak (eine Varietät des Titanits) mit Adular vom Goldbergwerk am Rohrberg im Zillerthal, Bitterkalk (Magnesite von Hall in Tirol), Fahlerz, Kupfer und Silbererz von Falkenstein bei Schwaz im Inntal (der Bergbau war bis 1813 in Betrieb). Die Sammlung aus Südtirol enthält schöne Diopside, viel Granate (meist Almandin), dazu Bergkristall, Cyanit, Tremolit, Pyroxen, Eisenglanz, Apatit, Idokras (Vesuvianit) usw.

Das Mineral Goethit ist nach Goethe benannt.

Literatur:

  • ENGELHARDT, W.v. (2003): Goethe im Gespräch mit der Erde. Landschaft, Gesteine, Mineralien und Erdgeschichte in seinem Leben und Werk. Hermann Böhlaus Verlag, Weimar: 375
  • FRITZ, F. (2007): Johann Wolfgang von Goethe, ein „Geognost“ seiner Zeit. Berichte des Naturwissenschaftlichen Vereins für Schwaben e.V. Bd 111: 13-22
  • WOLFF, H. (1986): Goethes Kenntnisse der Alpen im Lichte der modernen Geologie. JSTOR 70(2): 143-152

Tunnelbau in den Alpen

„Als noch drei Ellen zu durchstechen waren, so vernahm man die Stimme des einen, der dem anderen zurief, denn es war ein Spalt im Felsen … Und am Tage der Durchstechung schlugen die Steinhauer entgegen, Hacke auf Hacke.“

Beschreibung des Durchschlags des Soloha-Tunnels in Israel, der vor 2.700 Jahren als Bewässerungskanal angelegt wurde.
Der Bau des Mont-Cenis-Tunnels zwischen Italien und Frankreich.

Kein anderes Hochgebirge der Erde ist von so vielen Tunnels durchzogen wie die Alpen. Es existieren mehr als 720 Kilometer Tunnellänge. Bereits in der frühen Bronzezeit wurden Stollen und Schächte angelegt für den Abbau von Kupfererz. In Nordtirol wurde ein 25 Meter langer Schacht auf ein Alter von 2.800 Jahren datiert. Die aufwendigen Anlagen für Erzabbau und –schmelze weisen darauf hin, dass hier professionelle Bergleute am Werk waren. Knochenreste zeigen weites an, dass sie gut versorgt wurden, mit Fleisch von Schwein, Schaf, Ziege und Rind (wobei Ochsen auch als Zugtiere verwendet werden konnten). Überraschenderweise war der konventionelle Vortrieb, mit Hammer, Meißel und Muskelkraft, noch weit bis ins 17.Jahrhundert üblich. Erste Versuchssprengungen mit Schwarzpulver wurden um 1627 durchgeführt. Der 1679-1681 ausgeführte Malpas-Tunnel in Frankreich war der erste durch Sprengungen aufgefahrene Verkehrstunnel. Im Jahr 1857 wurden am Mont-Cenis-Tunnel zwischen Frankreich und Italien zum ersten Mal hydraulische Bohgeräte eingesetzt und in 1867 erfand Alfred Nobel das Dynamit, das sicheren Sprengstofftransport und Sprengungen im Berg ermöglichte.

Tunnelbohrmaschine um 1881.

Franz von Rziha verfasste in 1872 das umfassende „Lehrbuch der gesammten Tunnelbaukunst“ und führte mit der „Gesteinsclassification für Tunnelbauten“ die sieben Gesteinsklassen ein, die auch noch heute im Tunnelbau zur Anwendung kommen um das Gebirge nach geotechnischen Gesichtspunkten einzuteilen – denn mineralogisches Gestein ist nicht gleich geotechnisches Gestein.

Es giebt, um thatsächliche Beispiele anzuführen, Kalk- und Sandsteine, die vom Mineralogen mit einem und demselben Härtegrad belegt und von ihm in ein und dieselben Klasse gereiht werden, welche aber der Gewinnungsarbeit so verschiedenartige Aufwand abringen, dass jene Fälle nicht selten sind, wo die Gewinnungskosten in einem Falle noch einmal so viel, als in dem anderen betragen.

Die Alpen bestehen aus einem Stapel von bis zu 15 Kilometer dicken Decken, die um 10 bis 200 Kilometer über das darunter liegende Grundgebirge geschoben wurden. Große Störungszonen und Falten kennzeichnen daher das Gebirge. Wenn ein Tunnel aufgelockerten Fels durchörtert, kann der Fels sich lösen und in den Tunnelquerschnitt eindringen. Geologen erstellen daher ein geologisches Modell, um Schwächezonen rechtzeitig zu erkennen. Die Tunneltrasse kann dann angepasst werden, z.B. Störungszonen vermieden werden oder bestimmte Tunnelabschnitte werden mit Stahlbögen und Gebirgsankern verstärkt. Der im Jahr 1911 fertiggestellte 13.735 Meter lange Lötschbergtunnel in den Schweizer Alpen, war der erste Tunnel, bei dem geologische Vorerkundungen durchgeführt wurden.

Der bisher längste Tunnel in den Alpen ist der 57 Kilometer lange Gotthard-Basistunnel, der 2016 fertiggestellt wurde. Auch hier mussten mehrere Störungszonen durchörtert werden. Wenn der Brenner-Basistunnel im Jahr 2026 fertiggestellt wird, wird er mit einer Länge von 64 km die längste unterirdische Eisenbahnverbindung der Welt sein. Der Tunnel hat im Jahr 2014 die Periadriatische Naht durchörtert, eine der größten Störungszonen in den Östlichen Alpen.

Gneis-Block aus dem Gotthard Basistunnel – der helle Leventina-Gneis geht im Bereich des Gotthardmassivs zum dunkleren, stark verfalteten Lucomagno-Gneis über.

Literatur:

  • RZIHA, F. (1872): Lehrbuch der gesammten Tunnelbaukunst. Ernst & Korn Verlag: 900

Glacier Reseach in the Alps

„It has already been said, that no small part of the present work refers to the nature and phenomena of glaciers. It may be well, therefore, before proceeding to details, to explain a little the state of our present knowledge respecting these great ice-masses, which are objects of a kind to interest even those who know them only from description, whilst those who have actually witnessed their wonderfully striking and grand characteristics can hardly need an inducement to enter into some inquiry respecting their nature and origin.“

James, D. Forbes (1900): Travels Through the Alps.

Today glaciers are studied worldwide and monitored as climate proxies, and the recent measurements show that almost all of them are retreating. The story about glaciers, their influence on the landscape and their possible use to reconstruct and monitor climate is an intriguing one, with many triumphs, setbacks and changes of mind.

Alpine glaciers at the beginning of the 20th- and in the early 21st-century.

For centuries, if not even millennia, the high-altitude regions of mountain ranges were visited and traveled by man, however, they were also forbidding places. The glaciers, masses of ice enclosing peaks and extending their tongues into valleys, were considered haunted by mountain spirits.

Despite such myths, there were some early insights of what glaciers actually really are. Greek historian and geographer Strabo (63 BC – 23 AD) describes a voyage through the Alps:

„… there is no protection against the large quantities of snow falling, and that form the most superficial layers of a glacier … []. It’s a common knowledge that a glacier is composed by many different layers lying horizontally, as the snow when falling and accumulating becomes hard and crystallizes … []“

However, this early knowledge got lost and was only rediscovered in the Renaissance. Between 1538 and 1548 glaciers were labeled (even if not depicted) with the term „Gletscher“ on topographic maps of Switzerland. The first historic depiction of a glacier is considered the watercolor-painting of the Vernagtferner in the Ötztaler Alps, dated to 1601. The Vernagtferner was a glacier that repeatedly dammed up the glacial lake Rofen, which outbursts caused heavy damage and loss of property, particularly in the years 1600, 1678, 1680, 1773, 1845, 1847 and 1848.

The valley of Rofen with the advancing Vernagtferner and ice-dammed lake, after Abraham Jäger , 1601.
The valley of Rofen with the Vernagtferner (on the right) in 2007.

Swiss naturalist Johann Jakob Scheuchzer, visiting in the year 1705 the Rhône Glacier, published his observations of the „true nature of the springs of the river Rhône“ in the opus „Itinera per Helvetiae alpinas regiones facta annis 1702-1711″, and confirms the idea that glaciers are formed by the accumulation of snow and they move and flow. The increasing interest to study glaciers in the Alps is also encouraged by enthusiastic travel reports. A.C. Bordier describes in his „Voyage pittoresque aux glaciers“ (1773) the Bosson glacier as a „huge marble ruins of a devastated city.“ Swiss naturalist Horace Benedict de Saussure was fascinated by the mountains of his homeland and an enthusiastic alpinist. After 1760 he traveled more than fourteen times through the Alps (considering the possibilities in this time an extraordinary achievement) to explore valleys and mountains. In the years 1767 to 1779 the first volume of his „Voyages dans les Alpes“ was published, where he collected his observations and theories about the visited glaciers. He recognized moraines and large boulders as the debris accumulated by the glacier and proposed to map them to determine the former extent of glaciers. Despite this exact statement, de Saussure failed to connect large boulders found in the foreland of the mountains to the glaciers of the Alps. He assumed that these rocks were transported to their recent locations by an immense flood. The biblical flood explained why boulders found scattered around the plains of Germany came from outcrops located in Scandinavia or the Alps. However, to transport the boulders from the mountains, the flood had to reach 1000s of meters.

Despite such problems, the idea of a flood as the explanation for „glacial“ deposits in Europe was largely accepted. Even famous 19th-century geologists like Charles Lyell and Charles Darwin assumed that huge erratic boulders were transported by ice-rafts. That glaciers could flow far out of their valleys was, however, not an impossible idea for local inhabitants, who observed and experienced the growth and retreat of glaciers.

In 1815 the Swiss chamois hunter Jean Pierre Perraudin discussed with the engineer Ignatz Venetz his theory of former glaciers covering the Val de Bagnes. Impressed by such an idea, Venetz mapped geological features that made him recognize that not only the studied valley was once covered by ice, but the entire Swiss Alps. Vernetz’s lecture at the assembly of the Swiss Association for Natural History in 1829 was meet little interest. Only Jean de Charpentier, director of the salt mine in the city of Bex, was interested in this new theory. Charpentier himself started a detailed mapping project and in 1834 presented before the Swiss Association the results of his investigations, but again the ice-age theory was met with more criticism than interest. One of the critics in the public was a former student of Charpentier, named Jean Louis Rodolphe Agassiz, a young but respected paleontologist. Charpentier invited Agassiz to visit the city of Bex and surrounding mountains, to observe the recent glaciers and test the theory of former glaciers covering the Alps. In 1837 Agassiz held an enthusiastic lecture about glaciers and ice-ages. Three years later he published a detailed study of modern glaciers in his „Etudes sur les glaciers.“ However, even Agassiz experienced the same skepticism as many other ice-age proponents before. His friend, the

„I think that you should concentrate your moral and also your pecuniary strength upon this beautiful work on fossil fishes … In accepting considerable sums from England, you have, so to speak, contracted obligations to be met only by completing a work which will be at once a monument to your own glory and a landmark in the history of science … [] … No more ice, not much of echinoderms, plenty of fish …“

German geographer Alexander von Humboldt in a letter to Agassiz.
Glacial polished surfaces in Agassiz’s 1840 glacier book and on an outcrop.

However, Agassiz didn’t surrender to criticism so easily and decided to use his good connections to the most important geologists of his time to popularize the ice-age theory. Agassiz’s research on the Unteraar-glacier in Switzerland established the foundations of glaciology; he recorded the dimension of the glacier, its velocity and even ventured inside the glacier by passing through a glacial mill. Soon after, the measurements methods introduced by Agassiz were carried out on various glaciers of the Alps and repeated nearly every year. The historical records showed various fluctuations, but since 1850 the glaciers in the Alps are quickly retreating. Especially in the last decades, the vanishing glaciers are a cause of concern, as they are unequivocal signs of a warming climate.

Literatur:

  • KRÜGER, T. (2008): Die Entdeckung der Eiszeiten – Internationale Rezeption und Konsequenzen für das Verständnis der Klimageschichte. Wirtschafts-, Sozial- und Umweltgeschichte Bd., Schwabe Verlag: 619

Why Plate Tectonics was not invented in the Alps

„Like Venus, the theory of plate tectonics is very beautiful and born out of the sea.“

R. Trümpy, 2001

For over 200 years the Alps have been visited by geologists. For most of this time, they wondered how mountain ranges like the Alps formed. Folded sediments suggested forces pushing and squeezing the rocks. In the 18th century Swiss naturalist Johann Jakob Scheuchzer depicts and describes folds in the Swiss Alps, explaining them as layers deposited and then folded by the biblical flood.

The mountains around the Urnersee, from Scheuchzer´s „Helvetiae Stoicheiographia“, published in 1716.

German geologist Leopold von Buch (1774-1853) was convinced that mountains form like a bubble in Earth’s crust. Large magma intrusions displace and fold the superficial sedimentary layers. Von Buch believed that his theory could also explain the complex geology of the Alps, with magmatic and metamorphic rocks forming the inner zones and sedimentary rocks (like found in the Dolomites and the Northern Calcareous Alps) forming the outer borders. Based on von Buch’s research, French geologist Elie de Beaumont proposed that tilted and folded layers of different age were formed by periodic „magmatic“ pulses. At first, the horizontally deposited sediments are uplifted by the intrusion of a magmatic core. In a second phase, the layers become tilted and then new layers form by the erosion of older layers. The undeformed layers are tilted by a new orogenic cycle and so on. However, British geologists later showed that this theory couldn’t work as proposed. If a mountain formed around a magma intrusion, all the sedimentary layers should show similar strike and dip, but the strata in the Alps were tilted chaotically.

Central Gneiss of the Tauern Window (covered by snow) surrounded by former sedimentary rocks, now thick-banked marble (mountain in the middle of the photo) and schist (on the left) of the Penninic Ocean. Seen at first as evidence of von Buch’s theory of magmatic rocks uplifting sedimentary layers, nowadays it is seen as a example of the Alpine nappe structure. Here partial erosion removed part of the nappe, forming a tectonic window, where the oldest rocks found in the Alps remerge to the surface.
Elie De Beaumont’s mountain-building theory: (1) previously horizontal beds (b), tilted up and contorted on flanks of rising core (a), and younger flat beds (c) extending up to the foot of the chain;(2) in this case, also beds (c) are disturbed and flanked by new horizontal deposits (d).

A new theory – the Contracting Earth theory – was later formulated by American geologist James Dwigth Dana. This theory explained mountains and continents as products of a cooling and shrinking Earth. Like the surface of an old and dry apple, the shrinking Earth would develop fissures (basins) and wrinkles (mountains).

Austrian geologist Eduard Suess suggested in his book Die Entstehung der Alpen (1875; The Origin of the Alps) and multi-volume work Das Antlitz der Erde (1883-1909; The Face of the Earth, English edition 1904-1924) that deep-sea trenches found along the borders of the Pacific Ocean are zones where the seafloor is pushed beneath the continents. However, also Suess imagined that „the horizontal and uniform movements“ of rock layers could be explained by variations in Earth’s circumference. In 1906, Austrian geologist Otto Ampferer imagined with his “Unterströmungstheorie“ large currents in Earth’s mantle, pulling the upper crust, creating mountains like folds in a carpet. However, Ampferer and many other geologists working in the Alps used such theories only to explain very localized tectonic movements, like the thrust belt found in the Northern Calcareous Alps, mapped by Ampferer.

Thrusts had been noted in the Alps since the middle of the century, for example by Bernhard Studer (1853) and Arnold Escher (1841). In the Glarus Alps a spectacular thrust – here older Permian red beds and Mesozoic limestone cover younger Eocene to Oligocene Flysch – was explained by Escher and later by Albert Heim as a large „double fold“, a recumbent fold with inverted layers. In 1884, Marcel Bertrand proposed that a single, north-facing tectonic nappe could explain the inverted stratigraphy. The nappe was thrusted on older layers by the gravitational collapse of the mountains, when single sheets of sedimentary rocks sliding downwards get stacked atop each other.

Section with the „Glarus double fold“ by Albert Heim, from Livret- Guide Géologique, 1894.
A. Heim’s 1878 drawing of the Windgällen. Pink: in the foreground steeply inclined basement gneisses, on the Kleinen Windgällen late Paleozoic rhyolites; brown: Middle Jurassic formations; green: Upper Jurassic limestones (Hochgebirgskalk); yellow: Paleogene, mainly Eocene Flysch.

The Contracting Earth theory could explain the immense forces needed to crack and fold rocks on a global scale. However, it failed to explain the irregular distribution of mountains on Earth. According to the Contracting Earth theory,  features like mountain ranges should be distributed randomly on the uniformly shrinking planet. However, even a short glimpse on a map or globe shows that mountain ranges are not randomly distributed, but rather form long chains, like the Alps, the Caucasus and the Himalayas; or are instead found along one side of a continent, like the Rocky Mountains or the Andes, but not on the other side.

Tectonic map of Europe published by Eduard Suess in 1893. Suess was among the first to describe the tectonic structure of the Alps and together with Franz von Hauer he worked on a geological section. He recognized that European mountain-ranges were the product of at least three distinct orogenic cycles – the Alpine System (Alps, Pyrenees, Dinarides), the Variscian System (Bohemian Mass and truncated uplands in Spain and France) and the Caledonian System (truncated uplands in England and Scandinavia).

In January 1912 the German meteorologist Alfred Wegener presented in his public lecture Die Heraushebung der Großformen der Erdrinde (Kontinente und Ozeane) auf geophysikalischer Grundlage (The formation of large features of Earth’s crust (Continents and Oceans) explained on a geophysical basis) for the first time his idea of the ancient supercontinent Pangaea, from which all modern continents split apart. Three years later he publishes his book Entstehung der Kontinente und Ozeane, translated in the third edition and published in 1922 as The origin of continents and oceans. According to Wegener, ocean basins form as continents split apart, mountains are formed as continental crust collides with the oceanic crust or other fragments of continental crust. Swiss geologist Émile Argand used in 1916 Wegener’s hypothesis to explain the closure of the Tethys Ocean, once located between Europe and Africa, and subsequent folding and overthrust of marine sediments on the continental crust of Europe.

Swiss geologist Emile Argand’s 1916 diagram of the western-Alpine geosyncline during its initial contraction (embryotectonics) with syn-orogenic emplacement of mafic magma (black, Piedmont ophiolites) along the sheared lower limb of the Dolin-Dent Blanche geoanticline. Simplified legend: (1) rigid foreland, (2) epicontinental basin, (3) Valais foredeep, (4) Gran St. Bernard nappe (5) Piedmont basin, (6) Dolin-Dent Blanche nappe.
Argand adopted between 1909 and 1934 the idea of nappes in the geology of the Alps, here a generalized view of the Europe-vergent Alpine thrust belt. Note that the Eastern Alps (4) override the western Alpine nappe stack (2-3), and its root zone is indented and back-folded by the Southalpine hinterland, in turn, deformed by south-vergent thrust. The Western Alps consist of ophiolite-bearing cover sequences (3) and Penninic nappes (2), squeezed out from the contraction of Alpine geosyncline (I-III: Simplon-Ticino nappes;IV-V-VI: Gran St. Bernard-Monte Rosa-Dent Blanche nappes), and overthrown onto the sliced (a-b: Helvetic basement) and undeformed (c) European foreland (1).

Despite Argand’s nappe theory could explain many mysteries of Alpine geology, like old and young rocks found together or the tectonic structure of the Alps, it would need almost another 50 years until it was widely accepted.

Argand’s 1911 cross-section of the Swiss Alps showing the tectonic nappes of the Adriatic microplate (in red and numbered VI), subducted Penninic Ocean (blue), Briançonnais microcontinent (violet and numbered V), European Plate (pink and numbered IV). The Dent Blanche nappe hosts also the famous Matterhorn, old African continental crust overthrusted onto younger sediments and oceanic crust of the Penninic Ocean.

Wegener’s continental drift theory (a catchy phrase adopted mainly by his critics, as Wegener talks more general of displacement theory) was received with mixed feelings. Most geologists regarded it as cherry-picking of data. Only a few geologists became convinced of his idea. Wegner himself reacted to the critics and tried to respond to them in various editions of his book, however with moderate success. The greatest problem facing Wegener was the lack of direct evidence for the movements of continents. No mechanism was known to be powerful enough to move entire continents. Wegener proposed gravitational pull, tidal and centrifugal forces, but British geophysicist and astronomer Harold Jeffreys (1891-1989) demonstrated that such forces are too weak to explain moving continents. Wegener will die in 1930. His continental drift theory is in many aspects erroneous. Not the single continents move, but fragments of Earth’s crust and the driving forces comes from within the planet, not from the outside. But Wegener’s work introduced the idea of moving continents to the scientific community and the public and decades later this legacy will influence a new kind of theory – modern Plate Tectonics.

Between 1959 and 1977, geologists Marie Tharp and Bruce Charles Heezen, published the first maps of the seafloor, showing what seemed to be large rift zones, where new crust can form as lava pours out from submarine fissures. Canadian geologist John “Jock” T. Wilson introduces in the 1960s with the mid-ocean ridges (where new crust forms), subduction zones (where old crust sinks back into Earth’s mantle) and transform faults (accommodating lateral movements) the modern elements of plate tectonics. Harry Hammond Hess, US Navy commander at Iwo Jima, a prospector in Zambia and later professor at Princeton, in 1962 publishes a paper that will become one of the most widely cited geophysics paper for years. He hypothesized that the seafloor widens along the mid-ocean rifts and crust movements are driven by currents in Earth’s mantle, providing also a mechanism for plate tectonics and so mountain building. (to be continued).

Austrian geologist Albrecht Spitz’s geologic cross sections of the Engadin Dolomites (1914), showing tectonic nappes and faults – a novelty at a time when most structures in the Alps were interpretated as large-scale folds.

References:

  • DalPIAZ, G.V. (2001): History of tectonic interpretations of the Alps. Journal of Geodynamics 32: 99-114
  • FRANKS, S. & TRÜMPY, R. (2005): The Sixth International Geological Congress: Zürich, 1894. Episodes, Vol. 28, no. 3: 187-192
  • HEIM, A. (1919-1922): Die Geologie der Schweiz.
  • SEARLE, M. (2013): Colliding Continents: A geological exploration of the Himalaya. Oxford University Press: 438
  • STÜWE, K. & HOMBERGER, R. (2011): Die Geologie der Alpen aus der Luft. Weishaupt Verlag: 296
  • TRÜMPY, R. (2001): Why Plate Tectonics was not invented in the Alps. Int J Earth Sciences Vol. 90: 477-483
  • TRÜMPY, R. & WESTERMANN, A. (2008): Albert Heim (1849-1937): Weitblick und Verblendung in der alpentektonischen Forschung. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 153(3/4): 67–79